THE QUASI-ORBIT SPACE OF CONTINUOUS C*-DYNAMICAL SYSTEMS

BY

HIROSHI TAKAI

ABSTRACT. Let (A, G, α) be a separable continuous C^* -dynamical system. Suppose G is amenable and α is free on the dual \widehat{A} of A. Then the quasi-orbit space $(\operatorname{Prim} A/\alpha)^{\sim}$ of the primitive ideal space $\operatorname{Prim} A$ of A by α is homeomorphic to the induced primitive ideal space which is dense in the primitive ideal space $\operatorname{Prim} C^*(A; \alpha)$ of the C^* -crossed product $C^*(A; \alpha)$ of A by α .

1. Introduction. The theory of crossed products of operator algebras has been developed by a number of people since von Neumann constructed the examples of factors. Among its various studies, Effros-Hahn [3] topologically characterized under certain conditions the primitive ideal space of C^* crossed products as the quasi-orbit space of transformation groups for separable abelian discrete C^* -dynamical systems. Succeedingly, Zeller-Meier [7] generalized their result in separable discrete C^* -dynamical systems. However, several different aspects come out in the continuous case. For instance, the original C^* -algebra is never imbedded in its crossed product as a sub C^* -algebra, therefore it has no associated conditional expectations from the crossed product. Moreover, it is unclear that any element in crossed products can be described as a Fourier expansion in certain fashion.

In this paper, we shall discuss the quasi-orbit space of separable continuous C^* -dynamical systems, specifically, given a separable continuous C^* -dynamical system (A, G, α) . Suppose G is amenable and α is free on the dual \widehat{A} of A. Then the quasi-orbit space $(\operatorname{Prim} A/\alpha)^{\sim}$ of the primitive ideal space $\operatorname{Prim} A$ of A by α is homeomorphic to the induced primitive ideal space $\{(\operatorname{Ind} \rho)^{-1}(0)\}_{\rho \in \widehat{A}}$ which is dense in the primitive ideal space $\operatorname{Prim} C^*(A, \alpha)$ of the C^* -crossed product $C^*(A, \alpha)$ of A by α . This can be considered as a generalization of Zeller-Meier's result.

Before entering into discussions, the author would like to express his hearty thanks to Professor D. Kastler for his warm hospitality and his invitation to CPT-CNRS, Marseille, where this work was performed, to Professor M. Takesaki for his helpful suggestions, and to Professor G. Zeller-Meier for his valuable comments.

Received by the editors July 28, 1974.

AMS (MOS) subject classifications (1970). Primary 46L05, 46L25, 54H20; Secondary 22D10, 22D30, 22D45.

Key words and phrases. Continuous dynamical system, quasi-orbit space, crossed products.

He is also greatly indebted to Dr. O. Bratteli for many fruitful discussions and critical reading of this paper.

2. Preliminaries. According to Effros-Hahn [3], Dang-Ngoc-Guichardet [2] Takai [5], [6], and Zeller-Meier [7], we shall briefly review several basic notions and fundamental results which will be used later. A triple (A, G, α) of a C^* -algebra A, a locally compact group G, and a *-homomorphism α of G into Aut(A) is called a continuous C^* -dynamical system if α is pointwise norm continuous, where Aut(A) is the set of all *-automorphisms of A. It is said to be separable if A and G are separable. Moreover, the action α is said to be free on a subset S of the representation space Rep A of A if given a $g \neq e \in G$, and a $\rho \neq 0 \in S$, any subrepresentation $\rho' \neq 0$ of ρ dominates a representation $\rho'' \neq 0$ with $\alpha_g \cdot \rho'' \mid \rho''$, where $(\alpha_g \cdot \rho'')(a) = \rho'' \circ \alpha_g^{-1}(a)$ for $a \in A$, $g \in G$. Let Fac A be the set of all factor representations of A. Since any nonzero subrepresentation of ρ is quasi-equivalent to ρ if $\rho \in \text{Fac } A$, freeness of α on S for a subset S of Fac A is equivalent to saying that $\alpha_g \cdot \rho \mid \rho$ for every $\rho \neq 0 \in S$. Furthermore, due to the fact that freeness is congruent with quasi-equivalence (resp. equivalence), it can be defined on the quasi-dual \hat{A} (resp. the dual \hat{A}) of A.

Now let (A, G, α) be a continuous C^* -dynamical system. According to Effros-Hahn [3], and Zeller-Meier [7], the quasi-orbit space $(Prim A/\alpha)^{\sim}$ of the primitive ideal space Prim A of A by α is defined by the set of all orbit closures in Prim A. It can be identified with the quotient space of Prim A by the following equivalence relation: $p \sim q$ if and only if $(G \cdot p)^- = (G \cdot q)^-$, where $(G \cdot p)^-$ is the closure of the orbit of $p \in Prim A$ by α . Then, it is easily seen that $(Prim A/\alpha)^{\sim}$ is a T_0 -space with respect to the quotient topology of Prim A. Define a Borel structure on $(Prim A/\alpha)^{\sim}$ by the quotient map of Prim A. Then, it is saturated with the quotient topology. Suppose A is separable, each element of $(Prim A/\alpha)^{\sim}$ is Borel since $(Prim A/\alpha)^{\sim}$ is a T_0 -space (cf. [3]).

The following lemma has the key role in finding a mapping from the primitive ideal space Prim $C^*(A, \alpha)$ of the crossed product $C^*(A; \alpha)$ into $(Prim A/\alpha)^{\sim}$:

LEMMA 2.1. Let (A, G, α) be a separable continuous C^* -dynamical system. Suppose there exists a projection valued measure on $(Prim A/\alpha)^{\sim}$ whose values are zero or identity operators. Then it is concentrated in one point (cf. [3]). Notice that it is unnecessary to assume the separability of G to show the above lemma.

Next, we shall define the C^* -crossed product (resp. the reduced C^* -crossed product) $C^*(A; \alpha)$ (resp. $C_r^*(A; \alpha)$) of C^* -algebra A by a continuous action α of a locally compact group as follows: Let $L^1(A; G)$ be the set of all A-valued Bochner integrable measurable functions on G with respect to the left Haar measure

 α_{g} of G with the *-algebraic structure given by

$$(xy)(g) = \int_G x(h) \alpha_h[y(h^{-1}g)] dh$$

and

$$x^*(g) = \Delta(g)^{-1}\alpha_g[x(g^{-1})]^*,$$

where Δ is the modular function of G. Then, $C^*(A; \alpha)$ (resp. $C_r^*(A; \alpha)$) is the completion of $L^1(A; \alpha)$ with respect to the C^* -norm $\|\cdot\|$ (resp. $\|\cdot\|_r$) defined by

$$||x|| = \sup\{||\pi(x)|| : \pi \in \text{Rep } L^1(A; G)\}$$

and

$$||x||_r = \sup\{||(\operatorname{Ind} \rho)(x)|| \colon \rho \in \operatorname{Rep} A\},\$$

where Ind ρ is the representation of $C^*(A; \alpha)$ induced by ρ (cf. [5], [6]). It is clear that $C_r^*(A; \alpha)$ is a quotient algebra of $C^*(A; \alpha)$. Let us define a positive linear functional $\widetilde{\varphi}_f$, on $C^*(A; \alpha)$ determined by

$$\widetilde{\varphi}_f(x) = \iint_{G \times G} f(g^{-1}h) \overline{f(h)} \varphi \circ \alpha_h^{-1}[x(g)] dg dh$$

for $x \in L^1(A; G)$, where φ is in the set $(A^*)_+$ of all positive linear functionals on A, and f is in the *-algebra K(G) of all continuous functions on G with compact support. Then, one can estimate $\|(\operatorname{Ind} \rho)(x)\|$ by $\widetilde{\varphi}_f$ as follows:

$$\|(\operatorname{Ind} \rho)(x)\|$$

(2.1)

$$=\sup\left\{\frac{\widetilde{\varphi}_f(y^*x^*xy)^{\frac{1}{2}}}{\widetilde{\varphi}_f(y^*y)^{\frac{1}{2}}}\colon y\in L^1(A;G), f\in K(G), \varphi\in\Omega(y;f)\cap W(\rho)\right\}$$

where $\Omega(y; f) = \{ \varphi \in (A^*)_+ : \widetilde{\varphi}_f(y^*y) \neq 0 \}$, and $w(\rho) = \{ \varphi \in (A^*)_+ : \pi_{\varphi} \in \text{Rep } A \text{ is weakly contained in } \rho \}$ (cf. [5]).

We now state a sufficient condition under which $C^*(A; \alpha)$ is equal to $C_r^*(A; \alpha)$.

LEMMA 2.2. Let (A, G, α) be a continuous C^* -dynamical system. Suppose G is amenable as a topological group, then we have

$$C^*(A; \alpha) = C_r^*(A; \alpha)$$
 (cf. [5], [6]).

Moreover, we present a condition under which Ind ρ is faithful on $C_r^*(A; \alpha)$.

LEMMA 2.3. Let (A, G, α) be as in the preceding, and ρ in Rep A. Then the following conditions are equivalent:

- (I) $\Sigma_{g\in G}^{\oplus}\alpha_g \cdot \rho$ is faithful on A,
- (II) Ind ρ is faithful on $C_r^*(A; \alpha)$ (cf. [5]).

By the above lemma, one knows without difficulty that faithfulness of ρ implies that of Ind ρ .

Finally, we shall write down a couple of special notations for later use. Let (A, G, α) be a continuous C^* -dynamical system. Then given $X \in C^*(A; \alpha)$, $a \in A$, there exists an element $aX \in C^*(A; \alpha)$, with (aX)(g) = aX(g) if $X \in L^1(A; G)$. Let I be an ideal of $C^*(A; \alpha)$ where "ideal" involves closed and two-sided throughout this paper. Denote by [A:I] the set of all elements a in A such that $aX \in I$ for all $X \in C^*(A; \alpha)$. It is not evident whether [A:I] is an ideal of A. However, the following observation tells us that it is affirmative:

LEMMA 2.4. Let (A, G, α) be a continuous C^* -dynamical system, and $\pi \in \text{Rep } C^*(A; \alpha)$. Suppose ρ is in Cov-rep A corresponding to π , then we have

$$[A:\pi^{-1}(0)] = \rho^{-1}(0)$$
 (cf. [3])

where Cov-rep A is the set of all covariant representations of A, and $\pi^{-1}(0)$ (resp. $\rho^{-1}(0)$) is the kernel of π (resp. ρ). From this fact, [A:I] for an ideal I of $C^*(A;\alpha)$ is an invariant ideal of A under the action α . (It is called α -invariant.)

3. The quasi-orbit space of continuous C^* -dynamical systems. In this section, we shall discuss the topological relation between the quasi-orbit space of continuous C^* -dynamical systems and the primitive ideal space of C^* -crossed products under certain conditions. Let (A, G, α) be a separable continuous C^* -dynamical system. Given a π in Fac $C^*(A; \alpha)$, there exists a unique ρ in Cov-rep A corresponding to π . Due to Glimm [4], there exists a unique projection valued measure μ_0 on the Borel structure of Prim A such that

(3.1)
$$\mu_{\rho}(\overline{U}) = \operatorname{Proj}[\rho(k(\overline{U}^c))\mathfrak{h}_{\rho}]$$

for every open set \overline{U} in Prim A, where Proj means projection and \overline{U}^c is the complement of \overline{U} in Prim A, and $k(\overline{U}^c)$ is the kernel of \overline{U}^c . Moreover, the range of μ_ρ is contained in the center z_ρ of the von Neumann algebra $\rho(A)^-$ generated by $\rho(A)$. Since π is primary and ρ is covariant, the measure μ_ρ is ergodic. Namely, the values of α -invariant Borel sets under μ_ρ are zero or identity operators on \mathfrak{h}_ρ . Let η be the natural mapping from Prim A onto (Prim A/α), and let ν_ρ be the image of μ_ρ by η . Then the range of ν_ρ is zero or identity operators on \mathfrak{h}_ρ . By Lemma 2.1, there exists an element $\eta(p)$ in (Prim A/α) at which ν_ρ is concentrated. We claim that $(G \cdot p)^-$ is the support Supp μ_ρ of μ_ρ . In fact, since $\eta^{-1} \circ \eta(p) \subset (G \cdot p)^-$, it follows that Supp $\mu_\rho \subset (G \cdot p)^-$. By the fact that Supp μ_ρ is α -invariant closed in Prim A, it contains $(G \cdot p)^-$, or must be disjoint from $\eta^{-1} \circ \eta(P)$. However, the latter case does not occur since μ_ρ is concentrated in $\eta^{-1} \circ \eta(P)$.

Consequently, one gets Supp $\mu_{\rho}=(G\cdot p)^-$. Moreover, it can be verified that Supp $\mu_{\rho}=h(\rho^{-1}(0))$ where $h(\rho^{-1}(0))$ is the hull of $\rho^{-1}(0)$. Actually, it is clear by definition that $h(\rho^{-1}(0))^c$ is an open null set with respect to μ_{ρ} . Therefore, Supp $\mu_{\rho}\subset h(\rho^{-1}(0))$. Suppose Supp μ_{ρ} is not equal to $h(\rho^{-1}(0))$. Then, there exists an open neighborhood \overline{U} of an element q in $h(\rho^{-1}(0))$ from which Supp μ_{ρ} is disjoint. Hence, it follows that $k(\overline{U}^c)\subset \rho^{-1}(0)$. Taking hull, one obtains that \overline{U} is disjoint from $h(\rho^{-1}(0))$, which is a contradiction. Summing up the argument discussed above, we have the following lemma:

LEMMA 3.1. Let (A, G, α) be a separable continuous C^* -dynamical system, and let π be in Fac $C^*(A; \alpha)$. Suppose ρ is in Cov-rep A corresponding to π . Then there exist a unique (up to equivalence) projection valued Borel measure μ_{ρ} on Prim A, and an element P in Prim A such that

Supp
$$\mu_{\rho} = (G \cdot p)^{-} = h(\rho^{-1}(0)).$$

REMARK. The measure μ_{ρ} also can be realized in the following way: Let $\rho = \int_{\hat{A}}^{\Theta} \rho_{\zeta} d\nu(\zeta)$ be the central decomposition of ρ . Using the canonical mapping ϕ from \hat{A} onto Prim A, one gets the image μ of ν under ϕ . It is nothing but μ_{ρ} up to equivalence.

By Lemmas 2.4 and 3.1, we can define a mapping Φ of Prim $C^*(A; \alpha)$ into (Prim A/α) by

$$\Phi(\mathfrak{P}) = h([A:\mathfrak{P}]).$$

Then, we have the following:

LEMMA 3.2. The mapping Φ defined above is continuous from Prim $C^*(A; \alpha)$ with the hull kernel topology into $(\operatorname{Prim} A/\alpha)^{\sim}$ with the quotient topology.

PROOF. Though the proof goes on as in the abelian case, we shall trace it for completeness. Given a closed set F in $(\operatorname{Prim} A/\alpha)^{\sim}$, it suffices to show that there exists a subset \mathcal{I} of $C^*(A;\alpha)$ such that $\Phi^{-1}(F) = h(\mathcal{I})$.

Define a set I by $\{aX: a \in k(F_1), X \in C^*(A; \alpha)\}$ where $F_1 = \eta^{-1}(F)$. Then, this set enjoys the property cited above. In fact, for any $\mathfrak{P} \in \Phi^{-1}(F)$, there exists a π in Irr $C^*(A; \alpha)$ whose kernel is \mathfrak{P} . Let ρ be in Cov-rep A corresponding to π . By Lemma 3.1, there exists a P in Prim A such that $h([A:\mathfrak{P}]) = (G \cdot p)^-$. Since $\Phi(\mathfrak{P}) \in F$, it follows by (3.2) that $p \in \eta^{-1}(F) = F_1$. Since F_1 is α -invariant closed in Prim A, it contains $(Gp)^-$, which means that $h([A:\mathfrak{P}]) = F_1$. Taking the kernel, one gets that $k(F_1) \subset [A:\mathfrak{P}] = \rho^{-1}(0)$. Since $\pi(ax) = \rho(a)\pi(x)$ for $a \in A$ and $X \in C^*(A; \alpha)$, it is verified that $I \subset \pi^{-1}(0) = \mathfrak{P}$. Thus, one obtains that $\mathfrak{P} \in h(I)$. Since one can trace the above argument back until its starting point, one gets the conclusion. Q.E.D.

From now on, let us assume that the action α is free on \hat{A} . Then, the next lemma guarantees that Φ is surjective:

LEMMA 3.3. Suppose α is free on \hat{A} . Then, one has for every $\rho \in \operatorname{Irr} A$,

- (i) Ind $\rho \in \operatorname{Irr} C^*(A; \alpha)$, and
- (ii) $\Phi[(\text{Ind }\rho)^{-1}(0)] = (G \cdot \rho^{-1}(0))^{-},$

where Irr means the set of all irreducible representations.

PROOF. (i) Let $G_{\widehat{\rho}}$ be the stabilizer of the equivalence class $\widehat{\rho} \in \widehat{A}$ of ρ , and let $(\overline{\rho}, \lambda)$ be in Cov-rep(A, G) corresponding to Ind ρ . Let \overline{U} be a strongly measurable cocycle representation of $G_{\widehat{\rho}}$ such that $\overline{U}_g^*\rho(a)\overline{U}g = \alpha_g \cdot \rho(a)$ for $a \in A$, $g \in G_{\widehat{\rho}}$. Define $\widetilde{U}g, g \in G_{\widehat{\rho}}$, by

$$(\widetilde{U}g\xi)(h) = \Delta(\rho)^{1/2}\overline{U}g\xi(hg)$$
 for $\xi \in L^2(\mathfrak{h}_{\rho};G), h \in G$.

Due to Busby-Smith [1], it can be shown that the commutant $\overline{\rho}(A)'$ of $\overline{\rho}$ is generated by the $\widetilde{U}g$, $g \in G_{\widehat{\rho}}$, and the diagonalizable algebra. Since α is free on \widehat{A} , it follows that $\overline{\rho}(A)'$ is the diagonal algebra. Since the only diagonals which commute with λ are the constant, one gets the statement (i).

(ii) By definition, it suffices to show that $h(\overline{\rho}^{-1}(0)) = (G \cdot \rho^{-1}(0))^-$. Since $\overline{\rho}^{-1}(0) = \bigcap_{g \in G} (\alpha_g \cdot \rho)^{-1}(0)$, it follows that

$$h(\overline{\rho}^{-1}(0)) = h\left(\bigcap_{g \in G} (\alpha_g \cdot \rho)^{-1}(0)\right) \supset \left(\bigcup_{g \in G} h[(\alpha_g \cdot \rho)^{-1}(0)]\right)^{-1},$$

which implies that $(G \cdot \rho^{-1}(0))^- \subset h(\overline{\rho}^{-1}(0))$. On the other hand, let $\mu_{\overline{\rho}}$ be the Borel measure determined by $\overline{\rho}$ as (3.1). Then one gets by simple computation that Supp $\mu_{\overline{\rho}} \subset (G \cdot \rho^{-1}(0))^-$. Thus, the statement (ii) follows by Lemma 3.1. Q.E.D.

In general, it is not clear whether the mapping Φ is injective. However, one can get a partial answer under the amenability of G. Let E be the set of all (Ind ρ)⁻¹(0), $\rho \in \operatorname{Irr} A$. Then the following lemma tells us that Φ is injective on E:

LEMMA 3.4. Let (A, G, α) be a separable continuous C^* -dynamical system, and let α be free on \hat{A} . Suppose G is amenable as a topological group. Then one has for every $\rho \in \operatorname{Irr} A$,

$$(\text{Ind }\rho)^{-1}(0) = C^*(\overline{\rho}^{-1}(0); \alpha)$$

where $\overline{\rho} \in \text{Cov-rep } A \text{ corresponding to Ind } \rho$.

PROOF. By definition, one easily gets that $(\operatorname{Ind} \rho)^{-1}(0) \supset C^*(\overline{\rho}^{-1}(0); \alpha)$. To show the converse inclusion, one first observes that $C^*(\overline{\rho}^{-1}(0); \alpha)$ is a primitive ideal of $C^*(A; \alpha)$. In fact, one estimates by Lemmas 2.2 and 2.3 that

$$C^*(A; \alpha)/(\operatorname{Ind} \rho)^{-1}(0) \cong (\operatorname{Ind} \rho)[C^*(A; \alpha)]$$

$$\cong (\operatorname{Ind} \iota)[C_r^*(\overline{\rho}(A); \overline{\alpha})] \cong C_r^*(\overline{\rho}(A); \overline{\alpha}) = C^*(\overline{\rho}(A); \overline{\alpha})$$

$$\cong C^*(A/\overline{\rho}^{-1}(0); \widetilde{\alpha}) \cong C^*(A; \alpha)/C^*(\overline{\rho}^{-1}(0); \alpha),$$

where $\overline{\alpha}$ (resp. $\widetilde{\alpha}$) is the continuous action of G on $\overline{\rho}(A)$ (resp $A/\overline{\rho}^{-1}(0)$) determined by $\overline{\rho}$ (resp. the natural map of A onto $A/\overline{\rho}^{-1}(0)$), and ι is the trivial automorphism of $\overline{\rho}(A)$. Therefore, there exists a π in Irr $C^*(A;\alpha)$ with $\pi^{-1}(0) = C^*(\overline{\rho}^{-1}(0);\alpha)$. Since every nonzero vector ξ in \mathfrak{h}_{π} is cyclic for π , it suffices to show that $\pi_{\xi}^{-1}(0) \supset (\operatorname{Ind} \rho)^{-1}(0)$ for π_{ξ} corresponding to $\omega_{\xi} \circ \pi$. Let (L, ∇) be in Cov-rep(A, G) associated with π . Then, one can see by Lemma 2.4 and $\pi^{-1}(0) = C^*(\overline{\rho}^{-1}(0);\alpha)$ that

(3.3)
$$L^{-1}(0) = [A : \pi^{-1}(0)] = \overline{\rho}^{-1}(0).$$

Since $\overline{\rho}^{-1}(0) = (\Sigma_{g \in G}^{\oplus} \alpha_g \cdot \rho)^{-1}(0)$, the equality (3.3) means that L is weakly equivalent to $\Sigma_{g \in G}^{\oplus} \alpha_g \cdot \rho$. On the other hand, the amenability of G gives us a sequence $(f_n)_n$ of K(G) such that $\widetilde{f}_n * f_n$ converges to 1 with respect to compact open topology where $\widetilde{f}_n(g) = \overline{f_n(g^{-1})}$. Let us take a positive linear functional Ψ_n on $C^*(A; \alpha)$ determined by $\Psi_n(x) = \int_G (\widetilde{f}_n * f_n)(g) \langle L[x(g)] \nabla (g) \xi | \xi \rangle dg$ for $x \in L^1(A; G)$. Then, it can be shown by [5] that

(3.4)
$$\Psi_n(y^*x^*xy) \le ||y||^2 ||\widetilde{f}_n \otimes \xi||^2 ||(\operatorname{Ind} L)(x)||^2$$

for every $x, y \in C^*(A; \alpha)$, and $n = 1, 2, \ldots$. Since L is weakly equivalent to $\sum_{g \in G}^{\oplus} \alpha_g \cdot \rho$, it follows by (2.1) that

(3.5)
$$\|(\operatorname{Ind} L)(x)\| = \|\operatorname{Ind}(\sum_{g \in G}^{\mathfrak{G}} \alpha_g \cdot \rho)(x)\|.$$

Since $\operatorname{Ind}(\Sigma_{g\in G}^{\bigoplus}\alpha_g\cdot\rho)$ (resp. $\operatorname{Ind}\alpha_g\cdot\rho$) is equivalent to $\Sigma_{g\in G}^{\bigoplus}\operatorname{Ind}\alpha_g\cdot\rho$ (resp. $\operatorname{Ind}\rho$), the equality (3.5) implies that

$$\begin{aligned} \|(\operatorname{Ind} L)(x)\| &= \|\sum_{g \in G}^{\bigoplus} (\operatorname{Ind} \alpha_g \cdot \rho)(x)\| = \sup_{g \in G} \|(\operatorname{Ind} \alpha_g \cdot \rho)(x)\| \\ &= \|(\operatorname{Ind} \rho)(x)\|. \end{aligned}$$

Thus, one obtains by (3.4) that

$$\Psi_n(y^*x^*xy) \leq \|y\|^2 \|\widetilde{f}_n \otimes \ \xi\|^2 \, \|(\operatorname{Ind} \, \rho)(x)\|^2$$

for every $x, y \in C^*(A; \alpha)$ and $n = 1, 2, \ldots$. Now suppose x is in (Ind ρ)⁻¹(0). Then, it follows that $\Psi_n(y^*x^*xy) = 0$ for all $y \in C^*(A; \alpha)$ and $n = 1, 2, \ldots$.

Since Ψ_n converges to $w_{\xi} \circ \pi$ weakly, $w_{\xi} \circ \pi(y^*x^*xy) = 0$ for all $y \in C^*(A; \alpha)$, which means that $x \in \pi_{\xi}^{-1}(0)$. Q.E.D.

By the above lemma, the mapping Φ is bijective from E onto $(\operatorname{Prim} A/\alpha)^{\sim}$. Combining all the lemmas obtained above, we shall show the following theorem which is a generalization of the result which is obtained by Effros-Hahn, and Zeller-Meier (cf. [3], [7]):

THEOREM 3.5. Let (A, G, α) be a separable continuous C^* -dynamical system. Suppose G is amenable and α is free on the dual \hat{A} of A. Then, the quasiorbit space $(\text{Prim } A/\alpha)^{\sim}$ of the primitive ideal space $(\text{Prim } A \text{ of } A \text{ by } \alpha \text{ is topologically imbedded in the primitive ideal space } \text{Prim } C^*(A; \alpha) \text{ of the } C^*$ -crossed product $C^*(A; \alpha)$ of A by α .

PROOF. Using the same notations denoted before, we shall show that Φ is a closed mapping from E onto $(\operatorname{Prim} A/\alpha)^{\sim}$. Let F be a closed set in E. Define F_0 by $\eta^{-1}[\Phi(F)]$. It has to be shown that F_0 is closed in $\operatorname{Prim} A$. Take a $p \in F_0$, and an $L \in \operatorname{Irr} A$ with $L^{-1}(0) = p$. To prove $p \in F_0$, it suffices to show that

(3.6)
$$(\operatorname{Ind} L)^{-1}(0) \supset \bigcap \{ (\operatorname{Ind} \rho)^{-1}(0) : \operatorname{Ind} \rho \in F \}.$$

Since $p \in F_0^-$, it follows that

$$L^{-1}(0) \supset \bigcap \{ \eta^{-1} [(G \cdot \rho^{-1}(0))^{-}] : \text{Ind } \rho \in F \}$$
$$\supset \bigcap \{ (\alpha_{g} \cdot \rho)^{-1}(0) : \text{Ind } \rho \in F, g \in G \},$$

which implies that L is weakly contained in the set $\{\alpha_g : \rho \colon \text{Ind } \rho \in F, g \in G\}$. By the similar method used in the previous lemma, one has that

$$\begin{aligned} \|(\operatorname{Ind} L)(x)\| &\leq \sup \{\|(\operatorname{Ind} \alpha_g \cdot \rho)(x)\| \colon \operatorname{Ind} \rho \in F, g \in G\} \\ &= \sup \{\|(\operatorname{Ind} \rho)(x)\| \colon \operatorname{Ind} \rho \in F\} \end{aligned}$$

for all $x \in C^*(A; \alpha)$. Therefore, the inclusion (3.8) holds. Thus, the mapping Φ is a homeomorphism from E onto $(\operatorname{Prim} A/\alpha)^{\sim}$. Q.E.D.

Since k(E)=(0), it follows by the above theorem that $(\operatorname{Prim} A/\alpha)^{\sim}$ is dense in $\operatorname{Prim} C^*(A;\alpha)$. Moreover, it is true that $\operatorname{Prim} C^*(A;\alpha)=\bigcup\{\mathfrak{P}^-:\mathfrak{P}\in E\}$. In fact, let $\pi^{-1}(0)\in\operatorname{Prim} C^*(A;\alpha)$ where $\pi\in\operatorname{Irr} C^*(A;\alpha)$. Taking $L\in\operatorname{Cov-rep} A$ corresponding to π , there exists a ρ in $\operatorname{Irr} A$ such that $\operatorname{Supp} \mu_L=(G\cdot\rho^{-1}(0))^-$. Then, it follows that $L^{-1}(0)=\overline{\rho}^{-1}(0)$. By Lemma 3.4, one has $(\operatorname{Ind}\rho)^{-1}(0)=C^*(\overline{\rho}^{-1}(0);\alpha)$. Therefore, one obtains that $(\operatorname{Ind}\rho)^{-1}(0)\subset\pi^{-1}(0)$, which means that $\pi^{-1}(0)\in\{(\operatorname{Ind}\rho)^{-1}(0)\}^-$.

Summing up the argument, we get the following:

COROLLARY 3.6. Let (A, G, α) be as the preceding. Then $(\operatorname{Prim} A/\alpha)^{\sim}$ is dense in $\operatorname{Prim} C^*(A; \alpha)$ and

Prim $C^*(A; \alpha) = \bigcup \{ \mathfrak{P}^-: \mathfrak{P} \in (\operatorname{Prim} A/\alpha)^- \}.$

REFERENCES

- 1. R. C. Busby and H. A. Smith, Representations of twisted group algebras, Trans. Amer. Math. Soc. 149 (1970), 503-537. MR 41 #9013.
- 2. Dang-Ngoc Nghiem and A. Guichardet, Seminar report on C*-dynamical systems, Paris, 1973.
- 3. E. G. Effros and F. Hahn, Locally compact transformation groups and C*-algebras, Mem. Amer. Math. Soc. No. 75 (1967). MR 37 #2895.
- 4. J. G. Glimm, Families of induced representations, Pacific J. Math. 12 (1962), 885-911. MR 26 #3819.
- 5. H. Takai, On a duality for crossed products of C*-algebras, CPT-CNRS, Marseille, 1974 (preprint).
- 6. ———, Dualité dans les produits croisés de C*-algèbres, C. R. Acad. Sci. Paris Sér. A-B 278 (1974), A1041-A1043.
- 7. G. Zeller-Meier, Produits croisés d'une C*-algèbre par un groupe d'automorphismes, J. Math. Pures Appl. (9) 47 (1968), 101-239. MR 39 #3329.

DEPARTMENT OF MATHEMATICAL SCIENCES, FACULTY OF ENGINEERING SCIENCE, OSAKA UNIVERSITY, TOYONAKA, OSAKA, JAPAN